博客
关于我
tensorflow2版本学习教程1-mnist数据集手写字体
阅读量:141 次
发布时间:2019-02-28

本文共 1330 字,大约阅读时间需要 4 分钟。

使用TensorFlow训练MNIST手写数字分类模型

MNIST是一个经典的图像分类数据集,包含60000张28x28的灰度图像,每张图像对应一个类别(0-9)。以下将介绍如何使用TensorFlow搭建并训练一个简单的分类模型。

导入数据集并预处理

首先,我们需要导入MNIST数据集。TensorFlow提供了一个可以直接使用的MNIST数据集,可以通过以下代码加载数据集:

mnist = tf.keras.datasets.mnist(x_train, y_train), (x_test, y_test) = mnist.load_data()

接下来,我们对训练集和测试集进行归一化处理:

x_train, x_test = x_train / 255.0, x_test / 255.0

搭建分类模型

使用TensorFlow的高级API,我们可以快速搭建一个分类模型。以下是一个简单的卷积神经网络结构:

model = tf.keras.models.Sequential([    tf.keras.layers.Flatten(input_shape=(28, 28)),    tf.keras.layers.Dense(128, activation='relu'),    tf.keras.layers.Dropout(0.2),    tf.keras.layers.Dense(10, activation='softmax')])
  • Flatten 层:将28x28的图像展平成一维向量。
  • Dense(128, activation='relu'):添加一个全连接层,128个神经元,使用ReLU激活函数。
  • Dropout(0.2):在训练过程中随机屏蔽20%的神经元,以防止过拟合。
  • Dense(10, activation='softmax'):最终分类层,输出10个概率值,代表数字0-9。

训练模型

接下来,我们配置模型的训练参数:

model.compile(optimizer='adam',              loss='sparse_categorical_crossentropy',              metrics=['accuracy'])
  • Adam:选择自适应优化器,能够较好地处理不同层的学习速率。
  • loss='sparse_categorical_crossentropy':使用分类交叉熵损失函数,适合多分类问题。
  • metrics=['accuracy']:监控准确率,训练过程中实时显示损失和准确率。

然后,使用模型拟合训练集:

model.fit(x_train, y_train, epochs=5)

训练过程会进行5个完整的迭代,逐步逼近最优解。

评估模型性能

最后,我们可以通过测试集来评估模型性能:

model.evaluate(x_test, y_test, verbose=2)
  • verbose=2:每隔2轮输出一轮的损失和准确率,减少冗余信息。
  • 返回的结果将显示测试集的平均损失和准确率。

通过以上步骤,我们已经成功训练并部署了一个能够识别手写数字的分类模型。

转载地址:http://lrbc.baihongyu.com/

你可能感兴趣的文章
Nginx 负载均衡详解
查看>>
nginx 配置 单页面应用的解决方案
查看>>
nginx 配置https(一)—— 自签名证书
查看>>
nginx 配置~~~本身就是一个静态资源的服务器
查看>>
Nginx 配置解析:从基础到高级应用指南
查看>>
nginx+Tomcat性能监控
查看>>
Nginx下配置codeigniter框架方法
查看>>
nginx总结及使用Docker创建nginx教程
查看>>
nginx报错:the “ssl“ parameter requires ngx_http_ssl_module in /usr/local/nginx/conf/nginx.conf:128
查看>>
nginx添加模块与https支持
查看>>
Nginx用户认证
查看>>
Nginx的Rewrite正则表达式,匹配非某单词
查看>>
Nginx的使用总结(一)
查看>>
Nginx的使用总结(二)
查看>>
Nginx的可视化神器nginx-gui的下载配置和使用
查看>>
Nginx的是什么?干什么用的?
查看>>
Nginx访问控制_登陆权限的控制(http_auth_basic_module)
查看>>
nginx负载均衡器处理session共享的几种方法(转)
查看>>
nginx负载均衡的5种策略(转载)
查看>>
nginx负载均衡的五种算法
查看>>